The Rules of the Game

The real numbers \( \mathbb{R} \) form a field. This means they satisfy standard algebraic properties like commutativity, associativity, and distributivity. But \( \mathbb{R} \) is also an ordered field, meaning there is a strict ordering \( \lt \) that behaves nicely with addition and multiplication.

One of the most important consequences of these properties is the Triangle Inequality, which states that for any \( a, b \in \mathbb{R} \): \[ |a + b| \le |a| + |b| \]

Visualizing the Triangle Inequality

Drag the handles for \( a \) (Blue) and \( b \) (Red) along the number line. Observe how the absolute value of their sum \( |a+b| \) compares to the sum of their absolute values \( |a| + |b| \).

a = 0
b = 0
Left Side
\( |a+b| = \) 0
Right Side
\( |a| + |b| = \) 0

Equality holds when \( a \) and \( b \) have the same sign!

The Archimedean Property

If \( x \gt 0 \) and \( \epsilon \gt 0 \), then for some natural number \( n \in \mathbb{N} \), we have \( n\epsilon \gt x \).
"No matter how far the destination \( x \), and how small your step \( \epsilon \), you will eventually get there."

n = 0 | Current Position: 0

Practice Problems

True/False

1. For all real numbers \( a \) and \( b \), \( |a + b| = |a| + |b| \).

Show Solution

FALSE - Counterexample: \( a = 1, b = -1 \). Then \( |1 + (-1)| = 0 \) but \( |1| + |-1| = 2 \). The correct statement is \( |a + b| \le |a| + |b| \) (triangle inequality).

2. If \( a \lt b \) and \( c \lt d \), then \( ac \lt bd \).

Show Solution

FALSE - Counterexample: \( a = -2, b = -1, c = 1, d = 2 \). Then \( -2 \lt -1 \) and \( 1 \lt 2 \), but \( ac = -2 \) and \( bd = -2 \), so \( ac = bd \). Need additional conditions (e.g., all positive).

3. If \( |a| \lt |b| \), then \( a \lt b \).

Show Solution

FALSE - Counterexample: \( a = -5, b = 1 \). Then \( |-5| = 5 \gt 1 = |1| \), so \( |a| \gt |b| \) but \( a \lt b \).

4. The inequality \( |a - b| \le |a| + |b| \) holds for all real numbers \( a \) and \( b \).

Show Solution

TRUE - By the triangle inequality: \( |a + (-b)| \le |a| + |-b| = |a| + |b| \), and \( |a - b| = |a + (-b)| \).

Fill in the Blank

5. Prove that if \( a \le b \) and \( b \le c \), then \( a \le c \).

By property _____, we conclude that \( a \le c \).

Show Solution

Property used: O3 (Transitivity)

6. Prove \( |(-5)(3)| = |-5| \cdot |3| \).

\( |(-5)(3)| = |-15| = \) _____

\( |-5| \cdot |3| = \) _____ \( \cdot \) _____ \( = \) _____

Show Solution

\( |(-5)(3)| = 15 \)

\( |-5| \cdot |3| = 5 \cdot 3 = 15 \)

7. Solve the inequality \( |x - 2| \lt 5 \).

\( \iff \) _____ \( \lt x - 2 \lt \) _____ (by \( |a| \lt c \iff -c \lt a \lt c \))

\( \iff \) _____ \( \lt x \lt \) _____

Answer: \( x \in \) (_____, _____)

Show Solution

\( -5 \lt x - 2 \lt 5 \)

\( -3 \lt x \lt 7 \)

Answer: \( (-3, 7) \)

Full Problems

8. Prove: If \( ac = bc \) and \( c \ne 0 \), then \( a = b \).

Show Solution

Given \( ac = bc \) with \( c \ne 0 \). By M4, \( c^{-1} \) exists. Multiply both sides by \( c^{-1} \):

\( (ac)c^{-1} = (bc)c^{-1} \)

\( a(cc^{-1}) = b(cc^{-1}) \) (by M1)

\( a \cdot 1 = b \cdot 1 \) (by M4)

\( a = b \) (by M3) \( \blacksquare \)

9. Prove: If \( 0 \lt a \lt b \), then \( a^2 \lt b^2 \).

Show Solution

Given \( 0 \lt a \lt b \).

By O5 with \( a \lt b \) and \( 0 \lt a \): \( a \cdot a \lt b \cdot a \), i.e., \( a^2 \lt ab \)

By O5 with \( a \lt b \) and \( 0 \lt b \): \( ab \lt b \cdot b \), i.e., \( ab \lt b^2 \)

By O3 (transitivity): \( a^2 \lt ab \) and \( ab \lt b^2 \) implies \( a^2 \lt b^2 \) \( \blacksquare \)

10. Solve: \( |2x + 3| \le 7 \)

Show Solution

\( -7 \le 2x + 3 \le 7 \)

\( -10 \le 2x \le 4 \)

\( -5 \le x \le 2 \)

Answer: \( x \in [-5, 2] \)

11. Prove: \( ||a| - |b|| \le |a - b| \) for all \( a, b \in \mathbb{R} \).

Show Solution

Apply triangle inequality to \( |a| = |(a - b) + b| \): \( |a| \le |a - b| + |b| \), so \( |a| - |b| \le |a - b| \)

Apply triangle inequality to \( |b| = |(b - a) + a| \): \( |b| \le |b - a| + |a| = |a - b| + |a| \), so \( |b| - |a| \le |a - b| \)

This means \( -(|a| - |b|) \le |a - b| \) and \( |a| - |b| \le |a - b| \)

Therefore: \( ||a| - |b|| \le |a - b| \) \( \blacksquare \)

12. Prove: If \( |a - 5| \lt 2 \) and \( |b - 3| \lt 1 \), then \( |a + b - 8| \lt 3 \).

Show Solution

\( |a + b - 8| = |(a - 5) + (b - 3)| \)

\( \le |a - 5| + |b - 3| \) (triangle inequality)

\( \lt 2 + 1 = 3 \) (given conditions) \( \blacksquare \)